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The diffraction of plane elastic unsteady waves by a delaminated inclusion
in the case of smooth contact in the delamination region™
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ARTICLE INFO ABSTRACT
Article history: A solution of the problem of the diffraction of unsteady elastic waves by a thin strip-like delaminated
Received 1 October 2007 rigid inclusion in an unbounded elastic medium under conditions of planer strain is proposed. We have

in mind an inclusion, one side of which is completely bonded with the medium while, the other side is
delaminated and conditions of smooth contact are satisfied on it. The method of solution is based on the
use of discontinuous solutions of the Lamé equations of motion under conditions of planer strain, which
have been constructed earlier in the space of Laplace transforms. As a result, the problem reduces to
solving a system of three singular integral equations for the transforms of the unknown discontinuities.
The inverse transforms are found by a numerical method, based on the replacement of a Mellin integral
by a Fourier series.

© 2008 Elsevier Ltd. All rights reserved.

Similar problems have been considered earlier in a static formulation % and for the case of harmonic oscillations.3
1. Formulation of the problem

Suppose a thin rigid inclusion, located in the xy plane in the domain |y| < h; |x| <a, is situated in an elastic body (the matrix) which is
under conditions of planer strain. Its lower side y = —h/2 is completely bonded to the elastic medium while the side y =h/2 is delaminated
and conditions of smooth contact are satisfied on it. Suppose a plane longitudinal wave with a potential ¢g(x,y,t) or a plane transverse shear
wave with a potential Usp(x,y,t) acts on the inclusion at the instant t=0.

We will denote the displacements caused by these waves by ug(x,y,t) and vg(x,y,t). The displacements in the matrix can then be
represented in the form of the sum of two terms:

U= uy+u, V=1U+0

where u; and v, are the displacements in the matrix caused by the waves reflected

from the inclusion. These displacements satisfy the Lamé equations of motion for plane strain and zero initial conditions when t=0.

In view of the small thickness of the inclusion, we will formulate the boundary conditions as viewed from the external medium into the

inclusion relative to its middle plane. In the case when one side of the inclusion is completely bonded and the other side is under conditions
of smooth contact, the stresses and strains in its middle plane undergo discontinuities, the jumps of which we will denote as follows:

{0} = X100, {1y} = ol 0), {0} = 0, {u} = xu(x0), |d<a (11)
where {0},} and {T},X} are the stresses in the matrix caused by the reflected waves, and the notation

{1 = f(x,+0,1) - f(x,-0,1)
is adopted. It follows from the conditions for the joining of the medium that

Xa(Xa, 1) = 0 (1.2)
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By virtue of the rigidity of the inclusion, the equalities

T (5, +0,1) = —T,(x,0,1),  ,(x,-0,1) = a,(1) + Y(1)x = Vy(x, 0, 1)

u(x,-0,1) = ay(t) —uy(x,0,1), |x|<a (13)

follow from the complete bonding and smooth contact conditions, where {'Tgx} are the sheat stresses in the incident wave field, a;(t)

and ay(t) are the unknown displacements of the inclusion along the y and x axes and y(t) is the unknown angle of rotation of the inclusion,
which are determined from the equations of motion of the inclusion as a rigid body:

maj(t) = Rj(t)’ ] = 1, 2, J'Y(t) = L(t)

a a 4
Ri(1) = jxj(x, Hdx, L(t) = Jxl(x, H)xdx, m = 2apyh, J = -?;maz
—a —a (1.4)

where m is the per unit length mass of the inclusion, J is the moment of inertia of unit length of the inclusion, pg is the density of the
inclusion, and R;(t) and L(t) are the reactive forces and moment on the inclusion on the part of the matrix.

2. Method of solution

In order to solve the initial boundary-value problem formulated above, we will first use an integral Laplace transformation
with respect to time (p is the transform parameter). Then, from relations (1.3) for the transforms of the corresponding functions
V1, Vo, U1, Uo, Tyy, Ty, G, L, Aj, R;, X(j = 1, 2), it follows that

T, (x, 40, p) = Ty, (x, 0, p)
Vi(x,=0,p) = A (p) + G(p)x— V((x,0, p), U(x,-0, p) = Ay(p)—Uy(x,0, p); x| <a 1)

After the Laplace transformation, the equations of motion of the inclusion (1.4) take the form

mp A/p) = Ri(p), j =12, Jp’G(p) = L(p)

a

Ri(p) = [X;(x, p)dx, L(p) = [X,(x, p)xdx
_ -a (2.2)

a

We will represent the transforms of the displacements and stresses in the matrix, caused by the reflected wave, in the form of the
discontinuous solution of the Laplace-transformed Lamé equations. For this purpose, one must put k; =ip/c;j(j=1,2) in the corresponding
formula for the discontinuous solution of the Lamé equations of motion in the case of harmonic oscillations (Ref. 4, formula (1.2)), where
c1 and c; are the velocities of the longitudinal and transverse waves in the matrix. As a result, the required transforms of the displacements
and shear stress are given by the formulae

1 o 1 .
Uy = — | X", p)55-(K, - Ky)dn + —; | X,(n, p)K12dn
upi{ dxdy upi_{

a a

1 o 1 ' >

Vi = — [ XM, p)K12dn + = [ Xy, p)K pdn
ups-, P2,

a
1
T}va = _2J.Xl(n’ P)Kﬂdn +
P2,

m g W22 Ve a2 ) el
+'§I +(M, p) é;cg—l’z 2~ a—xB—2—P1 1~ P2Ky | jan

P2, X (2.3)
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Here,

B 32 2 . 3 Py
Kj = —Kj+(pf—aa—2]1<k, Ky = EZF—pg)Kj—Z(a—z—p? K,

2
ox X x x

1 +°°eia(n—x)—v,|yl 1 —
K; = —ﬁfz—yjdn = —2—nKo(p,~«/(n—x) +y7)

—oo

; +ooeia(n—x)—7,-|)'l : ; 1
w« _ Lore T L. . A IR U
Ky = 271:-[ 20y, doi; v, m’ p;j=rpc;; jk=12

Ko(x)is amodified Bessel function and X} (m, p) is the derivative with respect to the variable m of the Laplace transform of the discontinuity
in the displacement x4(m,t). Integration by parts, taking account of formula (1.2), was carried out in the integrals containing the discontinuity
in the displacements when deriving formulae (2.3).

Representation in terms of a discontinuous solution enables us to find the stresses and displacements in the matrix if their jumps are
known. We shall obtain integral equations in order to find the discontinuities from the conditions on the inclusion (2.1). In order to do this,
we initially differentiate the last two equalities of (2.1) with respect to the variable x and we add to the result the conditions of equivalence
of the initial and differentiated equalities. We obtain

V'l(x7 _0, p) = G(p) - V;)(-x’ 0’ P), U'l (-x7 _09 P) = —UE)(X, 09 P)
Vi(=a,-0,p) = A;(p) - G(p)a—-Vy(-a,0, p),
Ul(_a’ _09 p) Az(P) - UO(_a’ 0’ p) (24)

After substituting expressions (2.3) into the first two equalities of (2.4) and into the first equality of (2.1), we obtain a system of three
integral equations in the transforms of the unknown discontinuities, the matrix-operator notation for which has the form

BO+QT®+RD = F, (e [-1,1] (2.5)

The following notation has been introduced here

1
re = <¢z(f—’gq)>’ R® = (P(z,q)R(z-C,q)), (f) = %dez

-1

"

D = [@,(z,9), Pz, 9), @3z PN, F = [£,(0), £(0), (01
1 &0 20-8)
050 2 T, 0T
2 1___& 0 2 5
B=looo0| Q=|""2 - s R=1T,0T,
1 2 07T, 0
00 ——E 0 _1 —€ 0 !
2
c c Cy c
710 = -21(at,0. 24}, £20) = -2vi[at,0.%4)
= Sy © | - X - a 2_ %
130 = 2uat0Zg) 2= g% g=2p g2
X (az C—zq) =2Lo (z,9), k=12 X'(az 62q) = —®,(z,q)
k ) a C2|.L K\ <o ’ y “ 4 ’ a 314 (2.6)
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Likewise, from the remaining equalities of (2.4) we find

2
<q’|(z, q)[l +2§ Inlz + 1| + T¢(g(z + 1))}> +

+{Dy(z, Q)LE |z + 1] + T5(q(z + 1))]) = 0,(q) - 8(q) - for1(q)

2
<¢2(z, q)[1 +2<t’ In|z + 1| + Tg(q(z + 1))]> = 0o,(q) — fa(q)

for(@) CZV(IC2)f() 620(162)
q) = 5Vo(-1,—q], q) = 5Ug| -1, —¢
01 azo a 02 a20 a 27)

The following representations of modified Bessel functions was used in separating out the singular component of the kernels of the
integral operators in relations (2.50 and (2.7):

Ko(Eqz) = — Inldl + Fy(Eq2), EqK,(Eqz) = §+ Fi(Eq2)

Ki(&q) 1 1
Eqz £2427 + an!d + F,(Eqz)
K ( ) 1 1 1
(;:-aqiq)2 ) §3q3z3 - 43:(12 * 23:,qz(1n|zl + ln%g + C) + F3(§‘IZ)
Ky(&qz) _ 1

200597 _ 1 &q
Eaz qz(ln|z| +1In > + C) + F,(&qz)

In these formulae F;(€qz)(i=0,. . .,4) are functions which are bounded when z — 0, the actual form of which is not given here because of
their length, the functions Ty (z,q)(k=1,...,8) are linear combinations of them, and C is Euler’s constant.
To Egs. (2.5) and (2.7), it is necessary to add the condition which follows from equality (1.2):

(®3(z,q)» =0 (2.8)

The quantities
_ 2, (© _ (e
o,(g) = azA,(aq), 8(a) = 26(Zq)

are found from the equations of motion of the inclusion (2.2) which, in the new notation, have the form

p 3np h _ P
a;(q) = ;—pz(d),-(z,q)), g(q) = Lpz<¢1(z, D; €= 5, P = 5?1)

€q 8eq (2.9)

where p1 is the density of the matrix.
In order to separate out the singular component of system (2.5), we multiply both sides of equality (2.5) by the matrix Q! (this matrix
exists since detQ # 0). As a result, we obtain

M® +ET®+Q 'R® = Q'F (2.10)

where M=Q~'B, and E is the unit matrix. As was done when solving the analogous problem concerning harmonic oscillations,? after
this we introduce the unknown functions

¥(z,q) = P'®(z.q), P(z.q) = P¥(z.q). ¥ = [V, ¥, ¥, (211)

The matrix p was constructed in such a manner that P-!MP=D, where D is a third-order diagonal matrix. This matrix exists > and, since
the eigenvalues of the matrix M are different, it can be easily constructed. In this case, the diagonal elements of the matrix D are

Dy=A =0, Dy=2A =12, Dy =4y =-1/2

After substituting the new functions into equality (2.5) and multiplying the resulting equality by P!, we arrive at the system of singular
integral equations

¥ (2 3
WG+ (HED) S e ) = Vo

i=1 (2.12)
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where Lj; and Y}, are elements of the following matrix and vector
—1 -1 -1 -1
L=P'A'Rz-0P, Y=P AF

It is necessary to consider system (2.12) together with equalities (2.7)-(2.9) which, after the introduction of the new unknown functions
(2.11), have the form

X106(q) + X267(q) = X367(q) = 1 (q) — 8(q) + fo1(q)
X208(q) + X308(q) = 0(q) + f2(q) (2.13)

Here,

, 2
Xko(q) = <\Pk(2’21)[1 +2£" Injz+ 1] + T)(q(z + 1))]>, k=123, 1=6,8

2
Xke7(q) = <\Pk(1, (1)[— ETs(q(z + 1)) + 1 Ea T.(q(z + 1))}>
(Wy(z,9) - (¥3(z,9) = 0

a,(q) = —756—2<‘1’1(z,q)—§2‘1‘2(z, q) +E¥5(2.9)). ay(q) = —lt-‘)—i(‘Pz(z,q)“I’;(z,q))
2¢eq 2eq

8(q) = ;Lﬁz((‘l’.(z, )~ E¥,(z, q) + E"¥5(2. 9))2)
gq

The solution of system (2.12), which is integrable when {c[—1,1], has the form 6

-0 +OP WG g, Kk =1,23
12, 0, =By =14, ay =P, = -3/4 214)

lYk(C7 q)

o, = B,

With respect to the functions Wy, ({,q), we assume that they satisfy the Holder condition when {e[—1,1] and we approximate them with
the interpolating polynomials ©

e By

Wila) = Y Wk(zkm,q):;,ﬁk © 23
m=1(C— 2., [P, (Zpm)] (2.15)

where z;,,, are the roots of the Jacobi polynomial P%:Px({).
We will now solve the problem of determining the values of the function W, ({,,,q) at the interpolation points from system (2.12). For
this purpose, we consider the singular integral operators

Y (z, +1/ Yi(z,
S [¥,1 = <zl(+cq)> S = W (€, ‘I)+2(—1)k 1< ;(_Zcq)>, k=273

and introduce the notation

~0t, —By

no (k)
AW (z,,., nP,_ Zkm

R kfg"’. D0 - oA = ““—ak‘,m( k )'

mat  kmT ok N20P, S (2]
j=12,..,n-1; k=1,2,3

The quadrature formulae
k+1

S|[\P|(C|j’ q)] = Plj» Sk["Pk(ij’ Q)1 = 2(-1) * ij (2.16)

hold, where {;; are the roots of the polynomial P;f‘{w*ﬁk(C)(j =1,2,...,n-1; k=1,2,3).
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The integrals with a logarithmic singularity can be evaluated using the quadrature formula ?

n
k k
2n(In(1 + D)Wz, @) = Y, AW, (2 ) D}y
m=1
n-1 (i

— |
DY) = 22+ (-1 2m+2(y(1+ o) -C) -2 Y (<1yFm ((zkg)§m 1)!
m=1 Tk m

(2.17)

where (—oy)m is the Pochhammer symbol.

In relations (2.12) and (2.13), we approximate the singular integrals by sums using formulae (2.16) and (2.17) and the regular integrals
using Gauss-Jacobi quadrature formulae.® As a result, relations (2.12) and (2.13) are replaced by the following system of linear algebraic
equations in the transforms of the unknown functions at the points of interpolation

3
P+ Y Qi = YViGpq), j=1,..,n-1; k=123

'
Z106(@) + Zogr(@) ~ Za(q) = Fo1(q) + 0y (@) — 8(q)
Zy0s(q) + Z305(q) = foa(q) + 05(q)

Ny (g9)-N$(g) = 0

a,(q) = N (q) - &N (g) + E2N(g)

ay(g) = Ni"(g)+ Ny (q)

8(@) = 3N (@) BN (@) + &N ()

I w 40
Quji = e Z A Wi(Zims ) Lyi(Zim — z;kj)

m=1

i < k i
N (q) = 25 3 AW D (i) G = 0,1
d4eq”,, _,

n 2
1 1+
Zio(9) = 5 > AW (2 Q)(—%“Dﬁf)"' Ty(q(zgm + 1))), l=6,8

m=1
l w 2 1+ &2
Zier(q) = m 2 AEn)Wk(ka’ ‘1)(—§ T(q(zm + 1)) + ) T7(q(zgm + 1)))
m=1 (2.18)

After solving system (2.18), the approximate values of the unknown functions can be found using formulae (2.14) and (2.15).
As previously,2 we shall consider the coefficients accompanying the step singularities in the stresses

K@) = lim yxn@Fn™, j=1.2
x—>taF0

as a quantity which characterizes the concentration of elastic stresses close to the inclusion.
We shall henceforth refer to them as the stress intensity factors (SIFs) for the delaminated inclusion. If the notation (2.6) is used, the
last formula becomes

+ T + T 3/4 _¢
ki(t) = a uk; (1), K;(1) = C%1151;0(1 FOTLT, T=—1 219

In the case of the Laplace transforms of the functions K].i(’r)

+

Ki(@) = 1m (1x0)*
{—-+150

®,(L, q)
(2.20)
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after substituting relations (2.14) and (2.15) into formula (2.2) and taking the limit, we finally obtain

Ki(g) = E'N*(9), Ki(q) = N*(9)

N*'(g) = 2"*W,(1,9), N(q) = 27"*Wy(~1,9) (2.21)

After the solution of system (2.12) has been found, formulae (2.21) and the last three equations of (2.18) enable as to find the transforms
of the SIFs and the amplitudes of the oscillations of the inclusion. It is found that the SIFs are proportional to the same quantities N* by
means of which the stress concentration close to the inclusion will also be determined. Their inverse transforms n* (1) were re-established
using numerical methods by replacing a Mellin integral by a Fourier series.10

3. Results of numerical investigations

We will now consider the results of numerical investigations of the relations n*(7) when longitudinal and transverse waves act on the
inclusion, which are respectively specified by potentials ¢g(j=1) and Wy(j =2) of the form

o, H(c)) (3.1)

or
. (3.2)

C; = ¢;t — (x+a)cosB, — ysinf,

and H(t) is the Heaviside function. It was assumed in the calculations that the dimensionless frequency f = awcz’l =3

Graphs of the function n*(7) in the case of the action of shock waves with potentials of the form of (3.1) on an inclusion are shown in
Fig. 1: a longitudinal wave with an angle of propagation 6y =0 and a transverse wave with an angle of propagation 6y = 7/2. In both cases,
a sharp increase in the absolute values of n*() up to the extremal values is observed at the instant when the wave arrives followed by an
oscillating trend to a certain constant value. The extremal values of n*(7) and the time required to reach a constant value are greater the
greater the relative density of the inclusion p = p1/ 0.

The relations n*(7), resulting from the action of the analogous harmonic waves with potentials of the form of (3.2) on the inclusion, are
shown in Fig. 2. For all values of the relative density of the inclusion, the oscillations reach steady conditions corresponding to harmonic
oscillations, and the time required to reach steady conditions increases as the relative density of the inclusion becomes greater. In passing

n
’—1/4 eO:O
2 4 /\
AN
! _
p=1

8, = /2
4
A N
e A ~
7 |
— 1/4
2
0 2 4 6 T
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n 6,=0
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-4
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4 6,=mn/2
g \5e1 |
| m M
| XX W
-2
\
-4
0 2 4 6 T

Fig. 2.

to the steady condition for harmonic oscillations 0 <7 <2, no values of n*(7), are observed which exceed the maximum values for the
state which has been established. This fact only enables one to solve the steady problem when investigating the stress state near such an
inclusion.
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